588 research outputs found

    The Case for a Low Extragalactic Gamma-ray Background

    Full text link
    Measurements of the diffuse extragalactic gamma-ray background (EGRB) are complicated by a strong Galactic foreground. Estimates of the EGRB flux and spectrum, obtained by modeling the Galactic emission, have produced a variety of (sometimes conflicting) results. The latest analysis of the EGRET data found an isotropic flux I_x=1.45+-0.05 above 100 MeV, in units of 10^-5 s^-1 cm^-2 sr^-1. We analyze the EGRET data in search for robust constraints on the EGRB flux, finding the gamma-ray sky strongly dominated by Galactic foreground even at high latitudes, with no conclusive evidence for an additional isotropic component. The gamma-ray intensity measured towards the Galactic poles is similar to or lower than previous estimates of I_x. The high latitude profile of the gamma-ray data is disk-like for 40<|b[deg]|<70, and even steeper for |b|>70; overall it exhibits strong Galactic features and is well fit by a simple Galactic model. Based on the |b|>40 data we find that I_x<0.5 at a 99% confidence level, with evidence for a much lower flux. We show that correlations with Galactic tracers, previously used to identify the Galactic foreground and estimate I_x, are not satisfactory; the results depend on the tracers used and on the part of the sky examined, because the Galactic emission is not linear in the Galactic tracers and exhibits spectral variations across the sky. The low EGRB flux favored by our analysis places stringent limits on extragalactic scenarios involving gamma-ray emission, such as radiation from blazars, intergalactic shocks and production of ultra-high energy cosmic rays and neutrinos. We suggest methods by which future gamma-ray missions such as GLAST and AGILE could indirectly identify the EGRB.Comment: Accepted for publication in JCAP. Increased sizes of polar regions examined, and added discussion of spectral data. Results unchange

    Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations

    Get PDF
    A number of studies have demonstrated the importance of ozone in climate change simulations, for example concerning global warming projections and atmospheric dynamics. However, fully interactive atmospheric chemistry schemes needed for calculating changes in ozone are computationally expensive. Climate modelers therefore often use climatological ozone fields, which are typically neither consistent with the actual climate state simulated by each model nor with the specific climate change scenario. This limitation applies in particular to standard modeling experiments such as preindustrial control or abrupt 4xCO2 climate sensitivity simulations. Here we suggest a novel method using a simple linear machine learning regression algorithm to predict ozone distributions for preindustrial and abrupt 4xCO2 simulations. Using the atmospheric temperature field as the only input, the regression reliably predicts three-dimensional ozone distributions at monthly to daily time intervals. In particular, the representation of stratospheric ozone variability is much improved compared with a fixed climatology, which is important for interactions with dynamical phenomena such as the polar vortices and the Quasi-Biennial Oscillation. Our method requires training data covering only a fraction of the usual length of simulations and thus promises to be an important stepping stone towards a range of new computationally efficient methods to consider ozone changes in long climate simulations. We highlight key development steps to further improve and extend the scope of machine learning-based ozone parameterizations

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+π−π+π−\pi^+\pi^-\pi^+\pi^-, π+π−\pi^+\pi^-K+^+K−^-, Ks0_s^0K±π∓^\pm\pi^\mp, K+^+K−π0^-\pi^{0}, π+π−η\pi^+\pi^-\eta, π+π−ηâ€Č\pi^+\pi^-\eta', and ρ+ρ−\rho^+\rho^- using an integrated luminosity of 140 pb−1^{-1} at s≃91\sqrt{s} \simeq 91 GeV and of 52 pb−1^{-1} at s≃183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηcâ€Č\eta_c' are also given

    Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV

    Full text link
    The pair production of Z bosons is studied using the data collected by the L3 detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189 GeV. All the visible final states are considered and the cross section of this process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final states containing b quarks are enhanced by a dedicated selection and their production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02 (syst.) pb. Both results are in agreement with the Standard Model predictions. Limits on anomalous couplings between neutral gauge bosons are derived from these measurements

    Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV

    Full text link
    We report the result of a search for scalar leptons in e+e- collisions at 189 GeV centre-of-mass energy at LEP. No evidence for such particles is found in a data sample of 176 pb^{-1}. Improved upper limits are set on the production cross sections for these new particles. New exclusion contours in the parameter space of the Minimal Supersymmetric Standard Model are derived, as well as new lower limits on the masses of these supersymmetric particles. Under the assumptions of common gaugino and scalar masses at the GUT scale, we set an absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge

    Direct Observation of Longitudinally Polarised W Bosons

    Get PDF
    The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model

    Search for Low Scale Gravity Effects in e+e- Collisions at LEP

    Get PDF
    Recent theories propose that quantum gravity effects may be observable at LEP energies via gravitons that couple to Standard Model particles and propagate into extra spatial dimensions. The associated production of a graviton and a photon is searched for as well as the effects of virtual graviton exchange in the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No evidence for this new interaction is found in the data sample collected by the L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1 TeV on the scale of this new scenario of quantum gravity are set

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV

    Full text link
    A search for a Higgs boson decaying into invisible particles is performed using the data collected at LEP by the L3 experiment at centre-of-mass energies of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1 and 176.4 pb^-1. The observed candidates are consistent with the expectations from Standard Model processes. In the hypothesis that the production cross section of this Higgs boson equals the Standard Model one and the branching ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set at 95% confidence level
    • 

    corecore